Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884907

RESUMO

Endometriosis (EM) is an estrogen-dependent disease characterized by the presence of epithelial, stromal, and smooth muscle cells outside the uterine cavity. It is a chronic and debilitating condition affecting ~10% of women. EM is characterized by infertility and pain, such as dysmenorrhea, chronic pelvic pain, dyspareunia, dysuria, and dyschezia. Although EM was first described in 1860, its aetiology and pathogenesis remain uncertain. Recent evidence demonstrates that the peripheral nervous system plays an important role in the pathophysiology of this disease. Sensory nerves, which surround and innervate endometriotic lesions, not only drive the chronic and debilitating pain associated with EM but also contribute to a growth phenotype by secreting neurotrophic factors and interacting with surrounding immune cells. Here we review the role that peripheral nerves play in driving and maintaining endometriotic lesions. A better understanding of the role of this system, as well as its interactions with immune cells, will unearth novel disease-relevant pathways and targets, providing new therapeutics and better-tailored treatment options.


Assuntos
Endometriose/imunologia , Fatores de Crescimento Neural/metabolismo , Inflamação Neurogênica/etiologia , Endometriose/complicações , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação Neurogênica/imunologia , Dor Pélvica/etiologia , Dor Pélvica/imunologia , Células Receptoras Sensoriais/imunologia
2.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830245

RESUMO

Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.


Assuntos
Anti-Inflamatórios/uso terapêutico , Histamina/imunologia , Fatores Imunológicos/uso terapêutico , Prurido/imunologia , Receptores Histamínicos H1/imunologia , Células Receptoras Sensoriais/imunologia , Anticorpos Monoclonais/uso terapêutico , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Citocinas/metabolismo , Expressão Gênica , Histamina/metabolismo , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/patologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/patologia , Neuropeptídeos/antagonistas & inibidores , Neuropeptídeos/imunologia , Neuropeptídeos/metabolismo , Peptídeo Hidrolases/imunologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/uso terapêutico , Prurido/tratamento farmacológico , Prurido/genética , Prurido/patologia , Receptores Histamínicos H1/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/inervação , Pele/patologia
3.
J Neuroimmunol ; 361: 577757, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34768040

RESUMO

Antibodies against FGFR3 define a subgroup of sensory neuropathy (SN). The aim of this study was to identify the epitope(s) of anti-FGFR3 autoantibodies and potential epitope-dependent clinical subtypes. Using SPOT methodology, five specific candidate epitopes, three in the juxtamembrane domain (JMD) and two in the tyrosine kinase domain (TKD), were screened with 68 anti-FGFR3-positive patients and 35 healthy controls. The identified epitopes cover 6/15 functionally relevant sites of the protein. Four patients reacted with the JMD and 11 with the TKD, partly even in a phosphorylation-state dependent manner. The epitope could not be identified in the others. Patients with antibodies recognizing TKD exhibited a more severe clinical and electrophysiological impairment than others.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Doenças Autoimunes do Sistema Nervoso/imunologia , Epitopos/imunologia , Proteínas do Tecido Nervoso/imunologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/imunologia , Transtornos das Sensações/imunologia , Adulto , Autoanticorpos/sangue , Autoantígenos/química , Feminino , Gânglios Espinais/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Células Receptoras Sensoriais/imunologia
4.
J Neuroinflammation ; 18(1): 227, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645458

RESUMO

BACKGROUND: Macrophages in the peripheral nervous system are key players in the repair of nerve tissue and the development of neuropathic pain due to peripheral nerve injury. However, there is a lack of information on the origin and morphological features of macrophages in sensory ganglia after peripheral nerve injury, unlike those in the brain and spinal cord. We analyzed the origin and morphological features of sensory ganglionic macrophages after nerve ligation or transection using wild-type mice and mice with bone-marrow cell transplants. METHODS: After protecting the head of C57BL/6J mice with lead caps, they were irradiated and transplanted with bone-marrow-derived cells from GFP transgenic mice. The infraorbital nerve of a branch of the trigeminal nerve of wild-type mice was ligated or the infraorbital nerve of GFP-positive bone-marrow-cell-transplanted mice was transected. After immunostaining the trigeminal ganglion, the structures of the ganglionic macrophages, neurons, and satellite glial cells were analyzed using two-dimensional or three-dimensional images. RESULTS: The number of damaged neurons in the trigeminal ganglion increased from day 1 after infraorbital nerve ligation. Ganglionic macrophages proliferated from days 3 to 5. Furthermore, the numbers of macrophages increased from days 3 to 15. Bone-marrow-derived macrophages increased on day 7 after the infraorbital nerve was transected in the trigeminal ganglion of GFP-positive bone-marrow-cell-transplanted mice but most of the ganglionic macrophages were composed of tissue-resident cells. On day 7 after infraorbital nerve ligation, ganglionic macrophages increased in volume, extended their processes between the neurons and satellite glial cells, and contacted these neurons. Most of the ganglionic macrophages showed an M2 phenotype when contact was observed, and little neuronal cell death occurred. CONCLUSION: Most of the macrophages that appear after a nerve injury are tissue-resident, and these make direct contact with damaged neurons that act in a tissue-protective manner in the M2 phenotype. These results imply that tissue-resident macrophages signal to neurons directly through physical contact.


Assuntos
Transplante de Medula Óssea/métodos , Crescimento Celular , Gânglios Sensitivos/patologia , Macrófagos/patologia , Traumatismos dos Nervos Periféricos/patologia , Células Receptoras Sensoriais/patologia , Animais , Gânglios Sensitivos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Traumatismos dos Nervos Periféricos/imunologia , Traumatismos dos Nervos Periféricos/terapia , Células Receptoras Sensoriais/imunologia
5.
Free Radic Res ; 55(7): 757-775, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34238089

RESUMO

The mechanistic interactions among redox status of leukocytes, muscle, and exercise in pain regulation are still poorly understood and limit targeted treatment. Exercise benefits are numerous, including the treatment of chronic pain. However, unaccustomed exercise may be reported as undesirable as it may contribute to pain. The aim of the present review is to evaluate the relationship between oxidative metabolism and acute exercise-induced pain, and as to whether improved antioxidant capacity underpins the analgesic effects of regular exercise. Preclinical and clinical studies addressing relevant topics on mechanisms by which exercise modulates the nociceptive activity and how redox status can outline pain and analgesia are discussed, in sense of translating into refined outcomes. Emerging evidence points to the role of oxidative stress-induced signaling in sensitizing nociceptor sensory neurons. In response to acute exercise, there is an increase in oxidative metabolism, and consequently, pain. Instead, regular exercise can modulate redox status in favor of antioxidant capacity and repair mechanisms, which have consequently increased resistance to oxidative stress, damage, and pain. Data indicate that acute sessions of unaccustomed prolonged and/or intense exercise increase oxidative metabolism and regulate exercise-induced pain in the post-exercise recovery period. Further, evidence demonstrates regular exercise improves antioxidant status, indicating its therapeutic utility for chronic pain disorders. An improved comprehension of the role of redox status in exercise can provide helpful insights into immune-muscle communication during pain modulatory effects of exercise and support new therapeutic efforts and rationale for the promotion of exercise.


Assuntos
Analgesia/efeitos adversos , Exercício Físico , Músculo Esquelético/patologia , Nociceptores/patologia , Estresse Oxidativo , Dor/patologia , Células Receptoras Sensoriais/patologia , Humanos , Músculo Esquelético/metabolismo , Nociceptores/imunologia , Nociceptores/metabolismo , Oxirredução , Dor/etiologia , Dor/metabolismo , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo
6.
Front Immunol ; 12: 644664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135889

RESUMO

Alphaherpesviruses (α-HV) are a large family of double-stranded DNA viruses which cause many human and animal diseases. There are three human α-HVs: Herpes Simplex Viruses (HSV-1 and HSV-2) and Varicella Zoster Virus (VZV). All α-HV have evolved multiple strategies to suppress or exploit host cell innate immune signaling pathways to aid in their infections. All α-HVs initially infect epithelial cells (primary site of infection), and later spread to infect innervating sensory neurons. As with all herpesviruses, α-HVs have both a lytic (productive) and latent (dormant) stage of infection. During the lytic stage, the virus rapidly replicates in epithelial cells before it is cleared by the immune system. In contrast, latent infection in host neurons is a life-long infection. Upon infection of mucosal epithelial cells, herpesviruses immediately employ a variety of cellular mechanisms to evade host detection during active replication. Next, infectious viral progeny bud from infected cells and fuse to neuronal axonal terminals. Here, the nucleocapsid is transported via sensory neuron axons to the ganglion cell body, where latency is established until viral reactivation. This review will primarily focus on how HSV-1 induces various innate immune responses, including host cell recognition of viral constituents by pattern-recognition receptors (PRRs), induction of IFN-mediated immune responses involving toll-like receptor (TLR) signaling pathways, and cyclic GMP-AMP synthase stimulator of interferon genes (cGAS-STING). This review focuses on these pathways along with other mechanisms including autophagy and the complement system. We will summarize and discuss recent evidence which has revealed how HSV-1 is able to manipulate and evade host antiviral innate immune responses both in neuronal (sensory neurons of the trigeminal ganglia) and non-neuronal (epithelial) cells. Understanding the innate immune response mechanisms triggered by HSV-1 infection, and the mechanisms of innate immune evasion, will impact the development of future therapeutic treatments.


Assuntos
Axônios/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Evasão da Resposta Imune , Imunidade Inata , Células Receptoras Sensoriais/imunologia , Animais , Herpes Simples/terapia , Humanos , Transdução de Sinais/imunologia
7.
Front Immunol ; 12: 662234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012447

RESUMO

Herpes simplex virus type 1 (HSV-1) infection is highly prevalent in humans, with approximately two-thirds of the world population living with this virus. However, only a fraction of those carrying HSV-1, which elicits lifelong infections, are symptomatic. HSV-1 mainly causes lesions in the skin and mucosae but reaches the termini of sensory neurons innervating these tissues and travels in a retrograde manner to the neuron cell body where it establishes persistent infection and remains in a latent state until reactivated by different stimuli. When productive reactivations occur, the virus travels back along axons to the primary infection site, where new rounds of replication are initiated in the skin, in recurrent or secondary infections. During this process, new neuron infections occur. Noteworthy, the mechanisms underlying viral reactivations and the exit of latency are somewhat poorly understood and may be regulated by a crosstalk between the infected neurons and components of the immune system. Here, we review and discuss the immune responses that occur at the skin during primary and recurrent infections by HSV-1, as well as at the interphase of latently-infected neurons. Moreover, we discuss the implications of neuronal signals over the priming and migration of immune cells in the context of HSV-1 infection.


Assuntos
Células Epiteliais/metabolismo , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Células Receptoras Sensoriais/metabolismo , Dermatopatias Virais/imunologia , Animais , Técnicas de Cultura de Células , Células Epiteliais/imunologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , Humanos , Camundongos , Células Receptoras Sensoriais/imunologia , Ativação Viral , Latência Viral , Replicação Viral
8.
Nat Commun ; 12(1): 2936, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006861

RESUMO

Host protection against cutaneous herpes simplex virus 1 (HSV-1) infection relies on the induction of a robust adaptive immune response. Here, we show that Nav1.8+ sensory neurons, which are involved in pain perception, control the magnitude of CD8 T cell priming and expansion in HSV-1-infected mice. The ablation of Nav1.8-expressing sensory neurons is associated with extensive skin lesions characterized by enhanced inflammatory cytokine and chemokine production. Mechanistically, Nav1.8+ sensory neurons are required for the downregulation of neutrophil infiltration in the skin after viral clearance to limit the severity of tissue damage and restore skin homeostasis, as well as for eliciting robust CD8 T cell priming in skin-draining lymph nodes by controlling dendritic cell responses. Collectively, our data reveal an important role for the sensory nervous system in regulating both innate and adaptive immune responses to viral infection, thereby opening up possibilities for new therapeutic strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Dor Nociceptiva/imunologia , Células Receptoras Sensoriais/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/imunologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Infiltração de Neutrófilos/imunologia , Dor Nociceptiva/genética , Dor Nociceptiva/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/virologia , Pele/imunologia , Pele/metabolismo , Pele/virologia
9.
Front Immunol ; 12: 660203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912189

RESUMO

Bidirectional interplay between the peripheral immune and nervous systems plays a crucial role in maintaining homeostasis and responding to noxious stimuli. This crosstalk is facilitated by a variety of cytokines, inflammatory mediators and neuropeptides. Dysregulation of this delicate physiological balance is implicated in the pathological mechanisms of various skin disorders and peripheral neuropathies. The skin is a highly complex biological structure within which peripheral sensory nerve terminals and immune cells colocalise. Herein, we provide an overview of the sensory innervation of the skin and immune cells resident to the skin. We discuss modulation of cutaneous immune response by sensory neurons and their mediators (e.g., nociceptor-derived neuropeptides), and sensory neuron regulation by cutaneous immune cells (e.g., nociceptor sensitization by immune-derived mediators). In particular, we discuss recent findings concerning neuroimmune communication in skin infections, psoriasis, allergic contact dermatitis and atopic dermatitis. We then summarize evidence of neuroimmune mechanisms in the skin in the context of peripheral neuropathic pain states, including chemotherapy-induced peripheral neuropathy, diabetic polyneuropathy, post-herpetic neuralgia, HIV-induced neuropathy, as well as entrapment and traumatic neuropathies. Finally, we highlight the future promise of emerging therapies associated with skin neuroimmune crosstalk in neuropathic pain.


Assuntos
Citocinas/imunologia , Mediadores da Inflamação/imunologia , Neuralgia/imunologia , Neuroimunomodulação/imunologia , Células Receptoras Sensoriais/imunologia , Pele/imunologia , Animais , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Modelos Imunológicos , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Nociceptores/imunologia , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/inervação , Pele/metabolismo
10.
FASEB J ; 35(3): e21320, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33660333

RESUMO

Influenza A virus (IAV) is rapidly detected in the airways by the immune system, with resident parenchymal cells and leukocytes orchestrating viral sensing and the induction of antiviral inflammatory responses. The airways are innervated by heterogeneous populations of vagal sensory neurons which also play an important role in pulmonary defense. How these neurons respond to IAV respiratory infection remains unclear. Here, we use a murine model to provide the first evidence that vagal sensory neurons undergo significant transcriptional changes following a respiratory IAV infection. RNA sequencing on vagal sensory ganglia showed that IAV infection induced the expression of many genes associated with an antiviral and pro-inflammatory response and this was accompanied by a significant increase in inflammatory cell recruitment into the vagal ganglia. Assessment of gene expression in single-vagal sensory neurons confirmed that IAV infection induced a neuronal inflammatory phenotype, which was most prominent in bronchopulmonary neurons, and also evident in some neurons innervating other organs. The altered transcriptome could be mimicked by intranasal treatment with cytokines and the lung homogenates of infected mice, in the absence of infectious virus. These data argue that IAV pulmonary infection and subsequent inflammation induces vagal sensory ganglia neuroinflammation and this may have important implications for IAV-induced morbidity.


Assuntos
Inflamação/imunologia , Vírus da Influenza A , Pulmão/inervação , Infecções por Orthomyxoviridae/imunologia , Células Receptoras Sensoriais/imunologia , Nervo Vago/imunologia , Animais , Feminino , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Receptoras Sensoriais/metabolismo , Transcrição Gênica , Nervo Vago/metabolismo
11.
Front Immunol ; 12: 785355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975876

RESUMO

The lungs are constantly exposed to non-sterile air which carries harmful threats, such as particles and pathogens. Nonetheless, this organ is equipped with fast and efficient mechanisms to eliminate these threats from the airways as well as prevent pathogen invasion. The respiratory tract is densely innervated by sensory neurons, also known as nociceptors, which are responsible for the detection of external stimuli and initiation of physiological and immunological responses. Furthermore, expression of functional innate receptors by nociceptors have been reported; however, the influence of these receptors to the lung function and local immune response is poorly described. The COVID-19 pandemic has shown the importance of coordinated and competent pulmonary immunity for the prevention of pathogen spread as well as prevention of excessive tissue injury. New findings suggest that lung nociceptors can be a target of SARS-CoV-2 infection; what remains unclear is whether innate receptor trigger sensory neuron activation during SARS-CoV-2 infection and what is the relevance for the outcomes. Moreover, elderly individuals often present with respiratory, neurological and immunological dysfunction. Whether aging in the context of sensory nerve function and innate receptors contributes to the disorders of these systems is currently unknown. Here we discuss the expression of innate receptors by nociceptors, particularly in the lungs, and the possible impact of their activation on pulmonary immunity. We then demonstrate recent evidence that suggests lung sensory neurons as reservoirs for SARS-CoV-2 and possible viral recognition via innate receptors. Lastly, we explore the mechanisms by which lung nociceptors might contribute to disturbance in respiratory and immunological responses during the aging process.


Assuntos
Envelhecimento/imunologia , COVID-19/imunologia , Imunidade Inata/imunologia , Pulmão/imunologia , Nociceptores/imunologia , SARS-CoV-2/imunologia , Canais de Potencial de Receptor Transitório/imunologia , Idoso , COVID-19/virologia , Humanos , Pulmão/inervação , Pulmão/virologia , Nociceptores/metabolismo , Nociceptores/virologia , SARS-CoV-2/fisiologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/virologia , Canais de Potencial de Receptor Transitório/metabolismo
12.
Immunol Lett ; 229: 32-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248166

RESUMO

Clinically, a variety of micro-organisms cause painful infections. Before seen as bystanders in the context of infections, recent studies have demonstrated that, as immune cells, nociceptors can sense pathogen-derived products. Nociceptors and immune cells, therefore, have evolved to communicate with each other to control inflammatory and host responses against pathogens in a complementary way. This interaction is named as neuroimmune communication (or axon-axon immune reflex) and initiates after the release of neuropeptides, such as CGRP and VIP by neurons. By this neurogenic response, nociceptors orchestrate the activity of innate and adaptive immune cells in a context-dependent manner. In this review, we focus on how nociceptors sense pathogen-derived products to shape the host response. We also highlight the new concept involving the resolution of inflammation, which is related to an active and time-dependent biosynthetic shift from pro-inflammatory to pro-resolution mediators, the so-called specialized pro-resolving lipid mediators (SPMs). At very low doses, SPMs act on specific receptors to silence nociceptors, limit pain and neurogenic responses, and resolve infections. Furthermore, stimulation of the vagus nerve induces SPMs production to regulate immune responses in infections. Therefore, harnessing the current understanding of neuro-immune communication and neurogenic responses might provide the bases for reprogramming host responses against infections through well balanced and effective immune response and inflammation resolution.


Assuntos
Infecções/etiologia , Infecções/metabolismo , Neuroimunomodulação , Dor/etiologia , Animais , Biomarcadores , Comunicação Celular , Suscetibilidade a Doenças/imunologia , Metabolismo Energético , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/inervação , Sistema Imunitário/metabolismo , Infecções/complicações , Inflamação/complicações , Inflamação/etiologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Dor/diagnóstico , Dor/metabolismo , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo
13.
Cell ; 184(2): 441-459.e25, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33333021

RESUMO

Barrier tissue immune responses are regulated in part by nociceptors. Nociceptor ablation alters local immune responses at peripheral sites and within draining lymph nodes (LNs). The mechanisms and significance of nociceptor-dependent modulation of LN function are unknown. Using high-resolution imaging, viral tracing, single-cell transcriptomics, and optogenetics, we identified and functionally tested a sensory neuro-immune circuit that is responsive to lymph-borne inflammatory signals. Transcriptomics profiling revealed that multiple sensory neuron subsets, predominantly peptidergic nociceptors, innervate LNs, distinct from those innervating surrounding skin. To uncover LN-resident cells that may interact with LN-innervating sensory neurons, we generated a LN single-cell transcriptomics atlas and nominated nociceptor target populations and interaction modalities. Optogenetic stimulation of LN-innervating sensory fibers triggered rapid transcriptional changes in the predicted interacting cell types, particularly endothelium, stromal cells, and innate leukocytes. Thus, a unique population of sensory neurons monitors peripheral LNs and may locally regulate gene expression.


Assuntos
Imunomodulação , Linfonodos/imunologia , Linfonodos/inervação , Células Receptoras Sensoriais/imunologia , Potenciais de Ação , Animais , Inflamação/patologia , Camundongos , Nociceptores/metabolismo , Optogenética , Peptídeos/metabolismo , Pele/inervação , Sistema Nervoso Simpático/fisiologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
14.
Immunity ; 53(5): 1063-1077.e7, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33098765

RESUMO

Dendritic cells (DCs) of the cDC2 lineage initiate allergic immunity and in the dermis are marked by their expression of CD301b. CD301b+ dermal DCs respond to allergens encountered in vivo, but not in vitro. This suggests that another cell in the dermis may sense allergens and relay that information to activate and induce the migration of CD301b+ DCs to the draining lymph node (dLN). Using a model of cutaneous allergen exposure, we show that allergens directly activated TRPV1+ sensory neurons leading to itch and pain behaviors. Allergen-activated sensory neurons released the neuropeptide Substance P, which stimulated proximally located CD301b+ DCs through the Mas-related G-protein coupled receptor member A1 (MRGPRA1). Substance P induced CD301b+ DC migration to the dLN where they initiated T helper-2 cell differentiation. Thus, sensory neurons act as primary sensors of allergens, linking exposure to activation of allergic-skewing DCs and the initiation of an allergic immune response.


Assuntos
Alérgenos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Células Receptoras Sensoriais/metabolismo , Substância P/biossíntese , Animais , Biomarcadores , Movimento Celular/imunologia , Feminino , Gânglios Espinais/citologia , Hipersensibilidade/diagnóstico , Masculino , Camundongos , Células Receptoras Sensoriais/imunologia
15.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796067

RESUMO

Neurotropic Alphaherpesvirinae subfamily members such as bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) establish and maintain lifelong latent infections in neurons. Following infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia (TG) are an important site for latency. Certain external stressors can trigger reactivation from latency, in part because activation of the glucocorticoid receptor (GR) stimulates productive infection and promoters that drive expression of key viral transcriptional regulators. The Akt serine/threonine protein kinase family is linked to maintaining latency. For example, Akt3 is detected in more TG neurons during BoHV-1 latency than in reactivation and uninfected calves. Furthermore, Akt signaling correlates with maintaining HSV-1 latency in certain neuronal models of latency. Finally, an active Akt protein kinase is crucial for the ability of the HSV-1 latency-associated transcript (LAT) to inhibit apoptosis in neuronal cell lines. Consequently, we hypothesized that viral and/or cellular factors impair stress-induced transcription and reduce the incidence of reactivation triggered by low levels of stress. New studies demonstrate that Akt1 and Akt2, but not Akt3, significantly reduced GR-mediated transactivation of the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter, the HSV-1 infected cell protein 0 (ICP0) promoter, and the mouse mammary tumor virus long terminal repeat (MMTV-LTR). Akt3, but not Akt1 or Akt2, significantly enhanced neurite formation in mouse neuroblastoma cells, which correlates with repairing damaged neurons. These studies suggest that unique biological properties of the three Akt family members promote the maintenance of latency in differentiated neurons.IMPORTANCE External stressful stimuli are known to increase the incidence of reactivation of Alphaherpesvirinae subfamily members. Activation of the glucocorticoid receptor (GR) by the synthetic corticosteroid dexamethasone (DEX) stimulates bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) reactivation. Furthermore, GR and dexamethasone stimulate productive infection and promoters that drive expression of viral transcriptional regulators. These observations lead us to predict that stress-induced transcription is impaired by factors abundantly expressed during latency. Interestingly, activation of the Akt family of serine/threonine protein kinases is linked to maintenance of latency. New studies reveal that Akt1 and Ak2, but not Akt3, impaired GR- and dexamethasone-mediated transactivation of the BoHV-1 immediate early transcription unit 1 and HSV-1 ICP0 promoters. Strikingly, Akt3, but not Akt1 or Akt2, stimulated neurite formation in mouse neuroblastoma cells, a requirement for neurogenesis. These studies provide insight into how Akt family members may promote the maintenance of lifelong latency.


Assuntos
Herpes Simples/imunologia , Infecções por Herpesviridae/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Células Receptoras Sensoriais/virologia , Animais , Bovinos , Diferenciação Celular , Linhagem Celular Tumoral , Herpes Simples/genética , Herpes Simples/patologia , Herpes Simples/virologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/imunologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/imunologia , Camundongos , Neuritos/imunologia , Neuritos/ultraestrutura , Neuritos/virologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/imunologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/patologia , Transdução de Sinais , Ativação Transcricional/imunologia , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia
16.
Brain Behav Immun ; 89: 559-568, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32497778

RESUMO

The SARS-CoV-2 virus infects cells of the airway and lungs in humans causing the disease COVID-19. This disease is characterized by cough, shortness of breath, and in severe cases causes pneumonia and acute respiratory distress syndrome (ARDS) which can be fatal. Bronchial alveolar lavage fluid (BALF) and plasma from mild and severe cases of COVID-19 have been profiled using protein measurements and bulk and single cell RNA sequencing. Onset of pneumonia and ARDS can be rapid in COVID-19, suggesting a potential neuronal involvement in pathology and mortality. We hypothesized that SARS-CoV-2 infection drives changes in immune cell-derived factors that then interact with receptors expressed by the sensory neuronal innervation of the lung to further promote important aspects of disease severity, including ARDS. We sought to quantify how immune cells might interact with sensory innervation of the lung in COVID-19 using published data from patients, existing RNA sequencing datasets from human dorsal root ganglion neurons and other sources, and a genome-wide ligand-receptor pair database curated for pharmacological interactions relevant for neuro-immune interactions. Our findings reveal a landscape of ligand-receptor interactions in the lung caused by SARS-CoV-2 viral infection and point to potential interventions to reduce the burden of neurogenic inflammation in COVID-19 pulmonary disease. In particular, our work highlights opportunities for clinical trials with existing or under development rheumatoid arthritis and other (e.g. CCL2, CCR5 or EGFR inhibitors) drugs to treat high risk or severe COVID-19 cases.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Infecções por Coronavirus/imunologia , Citocinas/imunologia , Pulmão/imunologia , Pulmão/inervação , Pneumonia Viral/imunologia , Receptores de Citocinas/imunologia , Células Receptoras Sensoriais/imunologia , Antirreumáticos/uso terapêutico , Betacoronavirus , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Citocinas/metabolismo , Bases de Dados Factuais , Gânglios Espinais , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Terapia de Alvo Molecular , Nociceptores/metabolismo , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , RNA-Seq , Receptores de Citocinas/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/fisiopatologia , SARS-CoV-2 , Células Receptoras Sensoriais/metabolismo , Transcriptoma , Regulação para Cima , Tratamento Farmacológico da COVID-19
17.
Immunity ; 52(5): 753-766, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433948

RESUMO

Although the medical definition of itch has been in existence for 360 years, only in the last 20 years have we begun to understand the basic mechanisms that underlie this unique sensation. Therapeutics that specifically target chronic itch as a pathologic entity are currently still not available. Recent seminal advances in itch circuitry within the nervous system have intersected with discoveries in immunology in unexpected ways to rapidly inform emerging treatment strategies. The current review aims to introduce these basic concepts in itch biology and highlight how distinct immunologic pathways integrate with recently identified itch-sensory circuits in the nervous system to inform a major new paradigm of neuroimmunology and therapeutic development for chronic itch.


Assuntos
Gânglios Espinais/imunologia , Prurido/imunologia , Células Receptoras Sensoriais/imunologia , Pele/imunologia , Córtex Somatossensorial/imunologia , Animais , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Humanos , Modelos Imunológicos , Modelos Neurológicos , Prurido/diagnóstico , Prurido/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Pele/inervação , Córtex Somatossensorial/fisiopatologia
18.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32341116

RESUMO

The orchestration of host immune responses to enteric bacterial pathogens is a complex process involving the integration of numerous signals, including from the nervous system. Despite the recent progress in understanding the contribution of neuroimmune interactions in the regulation of inflammation, the mechanisms and effects of this communication during enteric bacterial infection are only beginning to be characterized. As part of this neuroimmune communication, neurons specialized to detect painful or otherwise noxious stimuli can respond to bacterial pathogens. Highlighting the complexity of these systems, the immunological consequences of sensory neuron activation can be either host adaptive or maladaptive, depending on the pathogen and organ system. These are but one of many types of neuroimmune circuits, with the vagus nerve and sympathetic innervation of numerous organs now known to modulate immune cell function and therefore dictate immunological outcomes during health and disease. Here, we review the evidence for neuroimmune communication in response to bacterial pathogens, and then discuss the consequences to host morbidity and mortality during infection of the gastrointestinal tract.


Assuntos
Sistema Nervoso Entérico/imunologia , Infecções por Enterobacteriaceae/imunologia , Microbioma Gastrointestinal/imunologia , Trato Gastrointestinal/imunologia , Neuroimunomodulação/genética , Células Receptoras Sensoriais/imunologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/imunologia , Citrobacter/crescimento & desenvolvimento , Citrobacter/imunologia , Sistema Nervoso Entérico/microbiologia , Infecções por Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Trato Gastrointestinal/inervação , Trato Gastrointestinal/microbiologia , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Células Receptoras Sensoriais/microbiologia , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/imunologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/imunologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
19.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L953-L964, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159971

RESUMO

The lungs and the immune and nervous systems functionally interact to respond to respiratory environmental exposures and infections. The lungs are innervated by vagal sensory neurons of the jugular and nodose ganglia, fused together in smaller mammals as the jugular-nodose complex (JNC). Whereas the JNC shares properties with the other sensory ganglia, the trigeminal (TG) and dorsal root ganglia (DRG), these sensory structures express differential sets of genes that reflect their unique functionalities. Here, we used RNA sequencing (RNA-seq) in mice to identify the differential transcriptomes of the three sensory ganglia types. Using a fluorescent retrograde tracer and fluorescence-activated cell sorting, we isolated a defined population of airway-innervating JNC neurons and determined their differential transcriptional map after pulmonary exposure to lipopolysaccharide (LPS), a major mediator of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) after infection with gram-negative bacteria or inhalation of organic dust. JNC neurons activated an injury response program, leading to increased expression of gene products such as the G protein-coupled receptor Cckbr, inducing functional changes in neuronal sensitivity to peptides, and Gpr151, also rapidly induced upon neuropathic nerve injury in pain models. Unique JNC-specific transcripts, present at only minimal levels in TG, DRG, and other organs, were identified. These included TMC3, encoding for a putative mechanosensor, and urotensin 2B, a hypertensive peptide. These findings highlight the unique properties of the JNC and reveal that ALI/ARDS rapidly induces a nerve injury-related state, changing vagal excitability.


Assuntos
Gânglio Nodoso/efeitos dos fármacos , Pneumonia/genética , Receptor de Colecistocinina B/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Transcriptoma , Traumatismos do Nervo Vago/genética , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Gânglios Espinais/patologia , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Nodoso/imunologia , Gânglio Nodoso/patologia , Hormônios Peptídicos/genética , Hormônios Peptídicos/imunologia , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Pneumonia/patologia , Receptor de Colecistocinina B/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/patologia , Análise de Sequência de RNA , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Traumatismos do Nervo Vago/induzido quimicamente , Traumatismos do Nervo Vago/imunologia , Traumatismos do Nervo Vago/patologia
20.
Clin Exp Allergy ; 50(5): 577-584, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31925827

RESUMO

BACKGROUND: Pruritus is a major symptom of atopic dermatitis (AD) and is transmitted by a subpopulation of non-myelinated C-type free nerve endings in the epidermis and upper dermis. Stimulation of these nerve terminals is affected by histamine, neurotrophins and physical factors. Eosinophils of patients with AD are a source of neurotrophins, including brain-derived neurotrophic factor (BDNF), levels of which correlate with disease severity. OBJECTIVE: The purpose of this study was to determine the anatomical localization of eosinophils in the skin of patients with AD with regard to peripheral nerves and to investigate whether eosinophils induce sprouting and neurite outgrowth in murine sensory neurons. METHODS: Cryosections of skin derived from AD and control (NA) patients were subjected to immunofluorescence analysis with markers for eosinophils, BDNF and neuronal cells. Stimulated eosinophil supernatants were used for the treatment of cultured peripheral mouse dorsal root ganglia (DRG) neurons followed by morphometric analysis. RESULTS: Dermal axon density and the proximity of eosinophils to nerve fibres were significantly higher in AD patients vs NA. Both neuronal projections and eosinophils expressed BDNF. Furthermore, activated eosinophil supernatants induced BDNF-dependent mouse DRG neuron branching. CONCLUSIONS AND CLINICAL RELEVANCE: Our results indicate that BDNF-positive eosinophils are also localized in close proximity with nerve fibres in AD, suggesting a functional relationship between BDNF-expressing eosinophils and neuronal projections. These observations suggest that eosinophils may have considerable impact on pruritus by supporting sensory nerve branching.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/imunologia , Dermatite Atópica , Derme , Eosinófilos , Epiderme , Células Receptoras Sensoriais , Adolescente , Adulto , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Derme/imunologia , Derme/inervação , Derme/patologia , Eosinófilos/imunologia , Eosinófilos/patologia , Epiderme/imunologia , Epiderme/inervação , Epiderme/patologia , Feminino , Humanos , Masculino , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...